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ABSTRACT 
 This two-part study presents experimental 
methodologies for the determination of thermal 
properties. Part I describes a thermal identification 
technique to be applied in non conductor solid 
materials, while Part II deals with the thermal 
identification of conductor solid materials. In Part I 
the technique, that estimates the thermal 
diffusivity, α, and the thermal conductivity, λ, 
simultaneously is based on signal treatment in both 
frequency and time domains of a same data. In the 
frequency domain, a dynamic model is defined by 
combining two heat flux and two superficial 
temperature. The thermal diffusivity is, then, 
obtained by identifying the phase of the frequency 
response of the model performed numerically. 
Once the thermal diffusivity is known the same 
data can be used to obtain the thermal conductivity 
in the time domain. In this case a least square 
function of measured and calculated temperature is 
used. The independent process for the thermal 
properties identification assures the obtained values 
of α and λ to be unique. A comparison with the 
Flash and the Guarded Hot Plate methods for a 
PVC (Polyvinyl chloride) sample gives a deviation 
of 3.22 % and 3.30 % for α and λ, respectively. 
 
NOMECLATURE 
 
F  frequency, Hz  
FFT  Fast Fourier Transform 
FM Flash Method  
GF  Green’s Function 
GHPM Guarded Hot Plate Method 
H(f) frequency response function, m2K/W 
Im(Sxy)  imaginary component of the 
cross-spectral density function, K2  
n total number of time measurements 

Re(Sxy)  real component of the cross-spectral 
density function, K2  
s the number of sensors 
Smq  least square objective function, K2 

Sp phase objective function, rad2  
Sxx   autoespectral density function of X(t), K2 

Syy   autoespectral density function of Y(t), K2 

Sxy   cross-spectral density function, K2 

xyS   is the modulus of  xyS

xyS

t   time, s 
To  initial temperature, oC  
Ti  temperature, ºC  
x,y  cartesian coordinates, m 
X(t) input signal in time domain, W/m2 

Y(t) output signal in time domain, oC 
X(f) input signal  in frequency domain 
Y(f) output signal in frequency domain 
Z(f) impedance function 

Z(f) modulus of  Z(f) 
 
 
GREEK SYMBOLS 
 
α thermal diffusivity, m2/s 
φi heat flux,  W/m² 
ϕ phase factor 
ϕxy  is the phase factor of  

λ thermal conductivity, W/mK 
θ  temperature difference, ºC 
 
 
Subscripts 
 
t relative to calculated data  
e relative to experimental data 
m   relative to integer variables  
1    relative to the thermocouple 1  
2    relative to the thermocouple 2  

mailto:vlborges@mecanica.ufu.br
mailto:metrevel@mecanica.ufu.br
mailto:gguima@mecanica.ufu.br


Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

INTRODUCTION 
 A considerable effort has been devoted for the 
fulfillment of the ever-growing demand for new 
materials with relevant application in engineering, 
especially in the evaluation of insulation material 
performance. In this case, the characterization of 
thermophysical properties as thermal diffusivity, 
α, and thermal conductivity, λ, is essential for the 
correct prediction of the thermal behavior of these 
materials. Some experimental methods have been 
used for determining these properties as the hot 
wire and flash methods. Blackwell [1] presents 
the hot wire technique for the measurement of the 
thermal conductivity. The technique requires 
inserting a probe inside the sample, and this 
appear to be the main difficulty of the method 
when applied to solid materials. Variations of this 
method have been used in recent works. For 
example, in Miyamura and Susa [2] for λ 
determination of liquid gallium and in Nahor et 
al. [3] to determine the optimal sensor in hot wire 
probe set up in foods. Parker et al. [4] have 
developed one of the more employed methods for 
measuring α of solid materials. This method 
involves exposing a thin slab of the material to a 
very short pulse of radiant (or other form) energy. 
The thermal diffusivity is determined through the 
identification of the time when the rear surface of 
the sample reach half of the maximum 
temperature rise. The use of flash method to 
measure α has been employed in countless papers 
as in Mardolcar [5] in rocks at high temperature 
and Eriksson et al. [6] in Liquid silicate melts. It 
should be observed that in both hot wire and flash 
methods only one property can be obtained with 
precision. The parameter estimation technique 
Beck & Arnold [7] can also be used to estimate 
simultaneously the thermal properties α and λ for 
different types of material. Although some efforts 
should be done to avoid low sensitivity regions 
for obtaining both properties with confidence. 
Guimarães et al. [8] and Lima e Silva et al. [9] 
have proposed the simultaneous estimation in 
independent ways. They use two independent 
objective functions for each one of the properties, 
thermal conductivity and thermal diffusivity, what 
assures the estimated values to be unique. In the 
first technique the properties are estimated in the 
frequency domain while the time domain case is 
used in the last technique. However, both 
techniques have some difficulties. In Ref. [8] the 
analytical dependence of Z(f) becomes difficult to 
apply two or three-dimensional models while the 

problem of low sensitivity in α estimation must 
be minimized in Ref. [9]. One way to alleviate 
these difficulties is the development of a 
technique that uses both the time and frequency 
domains to estimate α and λ.  
 In contrast of previous work of Guimarães et 
al. [8] that is based on one-dimensional analytical 
solution, this work not only use the 
one-dimensional numerical, but also a 
three-dimensional conception (showed in Part II). 
The great advantage of this procedure is the 
easiness in data experimental manipulation. 
Results of α and λ are in good agreement for two 
different polymers: Polythene and Polyvinyl 
chloride. 
 
THEORETICAL FUNDAMENTAL 
 The technique proposed here is based on the 
use of an input/output dynamical system (Fig. 1) 
that is obtained from a thermal model. The 
thermal model can be given by a one-dimensional 
model as shown in Fig. (2).  

 
 

  system

X= φ1(t) + φ2(t)

Y = θ1(t) − θ2(t)  
 

Figure 1. Input/output dynamic system 
 
 

L x   sample

φ1(t)

φ2(t)

θ1(t)

θ2(t)

thermocouple

 
Figure 2.Thermal model scheme 



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

The output signal Y must be obtained by solving 
the heat diffusion equation with the appropriate 
boundary conditions. The one-dimensional heat 
diffusion solution can be analytically obtained 
just involving the variables φi and Ti in lower and 
upper surfaces [8]. 
 The temperature distribution in a finite 
one-dimensional, constant property body which 
has an initial temperature distribution T0, can be 
described by 
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and initial condition 
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 The solution to the problem given by 
Eqs. (1)-(3) can be obtained through the use of 
GF, [10]. In this case the temperature solution is 
given by 
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where G(x / x’, t-τ) is the GF associated with the 
thermal problem. Equation (4) can be rewritten as 
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Hence for two different positions x1 and x2, Eq. 
(5) is given by 
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If  and φ)(tGi
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i(t) are functions of t defined for 
t > 0, then Eqs. (7) and (8) represent the 
convolution integral of these functions named by 

, hence iG
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If the Fourier transform (ℑ) of convolution of 
Eqs. (9) and (10) exist, one of its properties can 
be applied [11] as 
 

( ) )(.)()()( 1111 ffGttG φφ ++ =∗ℑ  (11) 
 
and 
 

( ) )(.)()()( 2212 ffGttG φφ ++ −=∗ℑ  (12) 
 
In this case Eqs. (11) and (12) can be identified in 
the frequency domain as 
 

)(.)()( 111 ffGf φθ +=  (13) 
 
and 
 

)(.)()( 222 ffGf φθ +−=  (14) 
 
Once the data φi(t) and θi(t) are experimental 
values, it means discrete values, the Fourier 
transforms can be performed numerically by 
using the Cooley-Tukey algorithms FFT [11]. 
Subtracting Eq. (13) from Eq. (14) gives 
 

[ ])()(.)()()( 2121 fffZff φφθθ +=−  (15) 
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where Z(f) is the impedance function, that is 
equivalent to the frequency response function H(f) 
of a Dynamical system given by 
 

)(
)()()()( 21 f

ffGfGf
X
Y

=−=Ζ ++  (16) 

 
as defined in Guimarães et al. [8], it means, 
considering the Eq. (15) and Fig. (1b) the 
impedance function can also be written as 
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The X(f) and Y(f) data are obtained 
experimentally by applying the Fourier transform 
to X(t) and Y(t) signals, it means, 
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where j = 1− . A more stable impedance 
function can be obtained by multiplying Eq. (17) 
by the complex conjugate of X(f), 
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where Sxy is the cross-spectral density of X(t) and 
Y(t) and Sxx is the autoespectral density of X(t) 
[11]. In polar form, Z(f) can be written as 
 

)f()()( jefZfZ ϕ−=  (21) 
 
where )()()( fSfSfZ xxxy= , and ϕ(f)=ϕxy(f). 

The auto-spectral density function  is a real 
function. The transformed frequency response in 
the f-x plane, is, thus, a complex variable, with a 
modulus 

xxS

Z  and a phase factor ϕ. 
 
THERMAL DIFFUSIVITY ESTIMATION: 
FREQUENCY DOMAIN 
 The great convenience of working in the 
frequency domain is the fact that the phase factor 
is a function that depends only on the thermal 

diffusivity α. The basic idea here is the 
observation that the delay between the 
experimental and theoretical temperature is an 
exclusive function of α. So, the minimization of 
an objective function, Sp, based on the difference 
between of the experimental and calculated values 
of the phase is the way to determine the thermal 
diffusivity. This function can, then, be written by 
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where ϕe and ϕt are the experimental and 
calculated values of the phase angle of Z 
respectively. The theoretical values of the phase 
angle are obtained from the identification of Z(f) 
by Eq. (20). In this case the output Y(f) is the 
Fourier transform of the difference θ1(t) - θ2(t)  
obtained by the numerical solution of Eqs. (1)-(3) 
by using the finite volume method [10]. In fact, 
this procedure avoids the necessity of an explicit 
and analytical model of Z(f). This kind of solution 
is the base of a 3D model to be applied in metal 
thermal identification. The input φ1(t) + φ2(t) 
responsible for thermal identification can be 
obtained from either experimental or simulated 
data. The values of α will be supposed to be those 
which minimize Eq. (22). In this work this 
minimization is done by using the golden section 
method with polynomial approximation [12]. 
 
THERMAL CONDUCTIVITY ESTIMATION: 
TIME DOMAIN 
 Once the thermal diffusivity value is obtained, 
an usual objective function based on temperature 
error can be used to estimate the thermal 
conductivity. In this case, there are no 
identifiability problems as just one variable is 
being estimated. Therefore, the variable λ will be 
the parameter that minimizes the least square 
function, Smq, based on the difference between the 
calculated and experimental temperature defined 
by 

( ) ( )[
2
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i
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 The optimization technique used to obtain λ is 
also the golden section method with polynomial 
approximation [12]. 
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EXPERIMENTAL APPARATUS 
 Two polymers samples were used, Polythene 
and Polyvinyl chloride (PVC), both with 
thickness of 50 mm and lateral dimensions of 305 
x 305 mm. Figure 2 shows the experimental 
apparatus where at time t = 0, the sample is in 
thermal equilibrium at T0. At this time, the sample 
is submitted to a unidirectional and uniform heat 
flux on its upper surface. The heat is supplied by 
a 22 Ω electrical resistance heater, covered with 
silicone rubber, with lateral dimensions of 305 x 
305 mm and thickness 1.4 mm. The heat flux are 
acquired by a transducer with lateral dimensions 
of 50 x 50 mm, thickness 0.1 mm, and constant 
time less than 10 ms. The transducer is based on 
the thermopile conception of multiple 
thermoelectric junction (made by electrolytic 
deposition) on a thin conductor sheet Güths [13]. 
The temperatures are measured using surface 
thermocouples (type K). The signals of heat flux 
and temperatures are acquired by a data 
acquisition system HP Series 75000 with 
voltmeter E1326B controlled by a personal 
computer. 
 

 
Figure 3 – Experimental apparatus used for 

determining α and λ 
 
 
RESULTS AND DISCUSSION 
 Figures (4) and (5) show respectively the 
evolution of the input signal and the output signal 
in function of time for one of the experimental of 
PVC sample.  
 Once the signals data have the same behavior 
for both PVC and Polythene, just the PVC test 
will be presented. Fifty independent runs for PVC 
and twenty independent runs for Polythene were 
realized. For both samples 1024 points were 
taken, where the time intervals, ∆t, were 7.034 s 
for PVC and 6.243 s for Polythene. The time 
duration of heating, th, was approximately 150 s 
for PVC and 90 s for Polythene with a heat pulse 
generated by a 40 V (DC) for both samples. As 
shown in Guimarães et al. [8] and Lima e Silva et 
al. [14] the phase factor depends only on α. In 
this case, analyses in the frequency regions in 

order to determine the best band for obtaining α 
are shown. The real and imaginary components of 
the cross-spectral density are shown in Figs. (6) 
and (7). The spectral density functions were 
obtained by averaging. 

The cross-spectral density is negligible for 
frequencies greater than 2.0 x 10-03 Hz. In this 
manner, the frequency range of interest for the 
generalized impedance is less than 2.0 x 10-3 Hz. 
This is an important result because it establishes 
the sampling time interval and the total number of 
experimental points of interest.  

 
 

 
Figure 4 – Evolution of the input signal 

 
 

 
Figure 5 – Evolution of the output signal 

Y(t) = T1(t) - T2(t) 
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Figure 6 – Real cross-spectral density function 

 

 
Figure 7 – Imaginary cross-spectral density 

function, Sxy(f) 
 
 

 
Figure 8 – Scaled sensitivity coefficient related to α 
 
 
 Another important way of analysis is the 
behavior of the sensitivity coefficients involved in 

the process. The first sensitivity coefficient 
analyzed is the Xϕ,α that is defined as the first 
derivative of phase angle with respect to the 
parameter α. Figure (8) shows the behavior of 
Xϕ,α in frequency domain. It can be seen that for 
frequencies greater than 1.0 x 10-3 Hz, Xϕ,α 
becomes constant and a little contribution is given 
for the estimation procedure. This fact reduces the 
analysis band and establishes the interest 
frequency in values less than 0.001 Hz. The other 
important coefficient is related with λ in the time 
domain. Figure (9) presents the Xθ,λ coefficient 
that is defined as the first derivative of the 
temperature model θ with respect to λ. The high 
values of this coefficient shows the great 
advantage of thermal conductivity estimation in 
time domain. 
 
 

 
Figure 9 – Scaled sensitivity coefficient related to λ 
 
Table 1. Statistics data to the averaged value of α, 

(initial value of α = 1.0 x 10-8 m2/s). 

α (m2/s) 
x 107 

Initial  
Sp x 1002 

Final  
Sp x 1007 

σ (m2/s) 
x 1010 

1.24  6.0 3.6 7.06  

 
Tables (1) and (2) present respectively the value 
estimated of α and λ for the fifty runs of PVC, with 
99.87 % confidence interval. In Table (3) a 
summary of the simultaneous estimation of α and 
λ of the PVC sample is presented. In this table, 
the comparison with the values obtained for α by 
using the Flash method [15] and λ by using the 
guarded hot plate method [15] presented errors of 
3.22 % and 3.30 % for α and λ, respectively.  
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Table 2. Statistics data to the averaged value of λ, 
(initial value of λ = 0,01 W/m.K). 

α (m2/s) x 
1007 

λ (W/mK) Initial 
Smq 10-06

 

Final  
Smq   

σ x 1005

(W/m.K) 

1.24±1.88% 0.152  1.351  5.91 4.9  

 
Table 3. Summary of α and λ for PVC sample 

α (m2/s)x107
 α (m2/s) x 

107 (FM) 

λ (W/m.K) λ (W/m.K)
(HPM) 

1.24±1.88 % 1.28±3.1 % 0.152±1.1 % 0.157 

 
 In Figure (10a) a comparison between 
experimental and estimated phase factor is 
presented. It can be observed a very good 
agreement between them. The Figure (10b) shows 
the residuals. 
 

 
a) 
 

 
b) 

Figure 10. Phase factor: a) experimental and 
calculated data b) residuals 

 The comparison between the experimental and 
estimated temperatures for α = 1.24 x 10-07 m2/s 
and λ = 0.152 W/m.K is shown in Fig. (11a). 
Again a good agreement between the data can be 
observed. It can be noted that the residuals 
presented in Fig. (11b), are situated in the range 
of uncertainty measurement of thermocouples, 
that in this work is ± 0.3 K. Table 4 presents a 
summary of the simultaneous estimation of α and 
λ for the Polythene sample with a confidence 
interval of 99.87 %. For this sample only the 
reference value for λ obtained by NPL [16] is 
presented. 

 
Table 4. Summary of α and λ for Polythene 

sample estimation 

α (m2/s) x 
107

 

λ (W/m.K) λ (W/m.K) 
(HPM) 

Error 
(%) 

2.14±1.15% 0.383±1.68 % 0.389 1.57 

 

 
 a) 

 
 b) 
Figure 11.Temperature evolution: a)experimental 

and calculated data b) residual 
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CONCLUSION 
 It is proposed in this work a technique to 
simultaneously estimate the thermal diffusivity 
and thermal conductivity for two polymers. The 
results have shown good agreement when 
compared with literature values. The fact of 
calculating the phase factor numerically is one of 
the most important advantages of the technique 
proposed here. This procedure allows the use of a 
3D transient model and consequently its 
application to conductor material identification. 
The metal application is shown in Part II of this 
study. 
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